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sity, V HoleSoviEkich 2, Praha 8, 180 00 Czechoslovakia 
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Abstract. The Romberg extrapolation technique, widely used for the evaluation of integrals, 
is generalised and applied to solving integral equations in scattering theory. The proposed 
approach makes it possible to obtain accurate results with a very small number of mesh 
points and to control the error of the approximation. Typical examples of the calculation 
of phase shifts and singularities of the T matrix (i.e. of the energies of bound, virtual and 
resonance states) are presented. 

1. Introduction 

Since the advent of the Faddeev equations in the early 1960s (Faddeev 1960) the 
integral equation description of scattering processes has become increasingly popular. 
The integral equation approach has several advantages over the traditional description 
by differential equations. Among others, the following two are of great importance: 
first, the boundary conditions are already incorporated in the integral equation and 
need not be added separately as in the case of differential equations (this is very 
important for problems where three or more particles interact) and, second, there exist 
well developed very efficient methods for solving integral equations which are usually 
much more stable than their differential equation counterparts. 

In this paper we restrict ourselves to one-channel problems. A typical example is 
the static exchange approximation of electron-hydrogen scattering (Mott and Massey 
1965). The integral equation describing this process is 

41(k,  r)  = udkr) + I,’ Gdk, r, r’) W r ’ ) $ ~ ( k  r ’ )  dr‘ 

roc r =  
Gl (k ,  r, r ’ )  Ul(r’, r’’)+l(k, r”) dr’ dr“ +J, J, 

where U,( kr )  is the free-particle wavefunction regular at the origin, GI is the free-particle 
Green function, V, is the static (i.e. local) part of the interaction and U, is the non-local 
part of the electron-hydrogen interaction caused by exchange of the electrons. The 
Green function GI is a smooth function of r and r’ but has a cusp at r = r ’ ,  where its 
first derivative is discontinuous. The explicit form of GI is 
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where u1 is the free-particle wavefunction irregular at the origin and both functions U, 
and u1 are assumed to be normalised so that their Wronskian is equal to unity. 

To solve equation (1) a discretisation of the variables Y and r’ must be introduced. 
Let us denote for simplicity the integral kernel G,( V,+ U,) of (1) as K 1  and introduce 
a quadrature rule with mesh points { r l }  ;” and weights { W,}:’ . Equation (1) then reduces 
to an algebraic equation: 

where we have added the superscript N to +I to explicitly indicate its dependence on 
the total number of mesh points N. 

The quantity of principal interest in the scattering theory is not the wavefunction 
4, itself but the T matrix, which is defined as 

As before we denote by TiN’ the T-matrix value obtained by means of a quadrature 
using N mesh points. 

It had been recognised a long time ago (Fraser 1961, Stern 1977) that the application 
of a numerical quadrature over the full integration range would give rise to an undefined 
error because of the discontinuous first derivative of the Green function at r = r‘.  
Recently Oza and Callaway (1987) implemented successfully the Newton-Cotes quad- 
rature formulae of high order with proper allowance for the discontinuity. Here we 
shall propose another way of avoiding the discontinuity problem, namely to use the 
trapezoidal rule (here all mesh points are the endpoints of the quadrature, and therefore 
the error is strictly under control) together with an extrapolation technique. 

2. Extrapolation technique 

The Romberg extrapolation technique is based on the expansion (Stroud 1974) 
N 

j n b f ( x ) d x =  1 W , f ( a + i h ) + ( ~ ~ h ~ + a ~ h ~ + . . .  
i=O 

= T ( h ) + R ( h ) .  ( 5 )  

Here T ( h )  is an approximation of the integral obtained by the trapezoidal rule with 
the constant grid size h, 

i = l , N  
i = 2 , 3 ,  . . . ,  N - 1  

N = ( b  - a ) / h  

are the weights and R ( h )  is the remainder, which for small h behaves as h2.  The 
essence of the Romberg extrapolation technique is to calculate two approximations to 
the integral, T ( h )  and T ( h / 2 ) ,  and to construct from them a new approximation 

where the remainder R , ( h )  behaves as h 4  for small h. The calculation is then repeated 
with grid sizes h/4,  h / 8 ,  h/16, etc, with the error of approximation decreasing as h6, 
hs ,  etc, until convergence is eventually reached. 
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It is not clear a priori whether this approach can be applied to the calculation of 
the T-matrix elements in the form (4). The calculation of the T-matrix elements differs 
from the calculation of an integral in two respects. The first problem is that the 
integrand itself depends on the number of mesh points N :  

N N  

Ti”’= uf (kr i )Kf (r i ,  rj)i,bjh’’(k, r j )  WiW,. 
i = o  j = o  

(7) 

This means that, by changing the number of mesh points N in (3), we generally obtain 
different values of the solution (i.e. of the function to be integrated) at any point 
common to both sets of mesh points, i.e. 

+f”(k, r , )  # i,bj2”(k, r i ) .  

The second problem is related to the spacing of the mesh points. The integration 
points are assumed to be spaced equidistantly in the Romberg approach, whereas in 
many physical situations the meshes must be chosen to be finer at smaller radial 
distances, where the interactions are usually stronger. What grid size h should be used 
in (5) in such a case? 

It is the purpose of this paper to demonstrate that the Romberg extrapolation 
technique, combined with variable grid sizes, constitutes a simple and very efficient 
means of calculation of T-matrix elements with high accuracy and controlled error. 

3. Results 

First we shall treat the case of local forces, i.e. U, = 0 in (1). For simplicity we restrict 
ourselves to the case 1 = 0 and omit all unnecessary subscripts. The Green function 
now takes the explicit form 

r’> r 
1 
k 
1 1 k 

- - sin kr cos kr’ 

-- cos kr sin kr’ 
(8) 

r >  r ’ .  
Go( k ;  r, r ’ )  = 

Equation ( l ) ,  which is of Fredholm type, can easily be transformed to a Volterra-type 
equation: 

cp(k, r ) = - - -  si:kr [:(cos kr sin kr’-sin kr cos kr’)V(r’)cp(k, r ’ )  dr’ (9) 

i.e. 

cp(k, r )  =k sin kr+jorg (k ;  r, r’)V(r’)cp(k, r ’ )  dr’ 

where 

g (  k ;  r, r ’ )  = Go( k ;  r, r ’ )  + (1/ k )  sin kr cos kr’. 

The solution $(k ,  r )  of (1) is expressed in terms of cp(k, r )  as 

i,b(k’ r ,  = 1 +J: cos krV(r)cp(k, r )  d r  
cp(k, r )  
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and the T-matrix element (more precisely, the K-matrix element in this case) as 

5," sin krV(r)p(k, r)  d r  
l+J:cos krV(r)p(k, r)  d r '  

T( k) = 

This quantity relates to the phase shift as 

T(k)  = -tan 6(k).  

The real principal-value Green function in (8) can be used only for real energies. For 
complex energies (i.e. for the calculation of resonances) this function must be replaced 
by 

1 
--sin kr exp(ikr') r '> r 

r >  r'. 
Go( k, r, r') = 

Then (12) defines the T matrix. Equation (9) is of the Volterra type. After discretising 
the variables we obtain an algebraic equation which is very easy to solve because the 
resulting matrix is triangular. To test this approach we have calculated the s-wave 
phase shifts for various potentials with increasing degree of complexity. 

3.1. Exponential potential 

The potential 

V( r)  = -2 exp( - r )  

had been previously investigated by many authors and the result of a variational 
calculation for k = 0.35 is (Lucchese et al 1983) 

tan 6 = 9.091 8095. 

The results are summarised in table 1. The entries in the column headed '1.0' were 
obtained by resorting to the equidistant partition of the interval (0,24) and N is the 
number of mesh points used for the extrapolation. This means that, for example, the 
value in the third row of this column has been obtained using 20, 39 and 77 mesh 
points (i.e. grid sizes h =%, $$ and $, respectively). The results demonstrate very fast 
convergence to the exact value. 

Table 1. Extrapolated value of tan S ( k )  at k =0.35 for the exponential potential (15). N 
denotes the number of mesh points and Q is the parameter in (16) which determines the 
distribution of the mesh points. For Q > 1 the grid spacings are finer near the origin. 

Q 

N 1 .O 1.5 2.0 3.0 4.5 

20 11.195 3270 10.761 037 3 11.008 306 3 11.905 779 3 14.403 323 0 
39 11.6595134 9.092 824 23 9.083 362 61 9.083 623 79 9.079 796 06 
77 9.047 731 61 9.092 857 11 9.091 816 98 9.091 820 73 9.091 824 92 

9.091 809 47 9.091 809 47 9.091 809 46 153 9.091 207 99 9.091 825 24 
305 9.091 812 36 9.091 81004 9.091 809 48 9.091 809 48 9.091 809 48 
609 9.091 809 48 9.091 809 50 9.091 809 48 9.091 809 48 9.091 809 48 
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The other columns of this table are designed to test the applicability of the 
extrapolation technique in the case of non-equidistant mesh points. The parameter Q 
determines the distribution of the mesh points as follows: 

(16) 

For Q = 1 the grid size is constant, whereas for Q > 1 the grid becomes finer near the 
origin. For example, for Q = 2 one-half of the meshes fall on the interval (0, 0.25Rm,,). 
All these calculations confirm the hypothesis that the extrapolation technique also 
converges in the case of non-equidistant mesh points. This makes it possible to get 
very precise results using a very small number of mesh points. For example, the value 
of the phase shift obtained with N=20 ,  39 and 77 mesh points and Q = 2  is correct 
to six significant figures, and that obtained with N = 20,39,77 and 153 points is correct 
to almost nine figures. Moreover, this convergence rate remains unchanged over a 
broad range of Q. 

3.2. Yukawa potential 

The Yukawa potential 

V (  r )  = -2 exp( -r) /  r 

has also been treated recently by Oza and Callaway (1987). The results of a phase-shift 
calculation for various energies and Q = 2 are summarised in table 2. Again we find 
very fast convergence in a very broad energy range. 

Table 2. Extrapolated values of the s-wave phase shift 8 for the Yukawa potential (18). 
N denotes the number of mesh points and E is the energy. 

E 
~ ~ ~~~~~~ 

N 0.01 0.1 1 .o 2.0 5.0 10.0 

8 2.693 706 20 2.022 945 88 1.283 464 44 1.110 923 23 0.822 530 951 0.952 164058 
15 2.440 036 64 1.701 878 65 1.073 940 97 0.913 020 334 0.750 080 863 0.540 020 249 
29 2.439 847 95 1.722 695 45 1.092 957 73 0.934 106 330 0.743 164 335 0.620 025 113 
57 2.439 654 18 1.722 225 50 1.092 441 45 0.933 424 531 0.744 235 37 0.617 367 418 

113 2.439 656 17 1.722 209 50 1.092 445 56 0.933 431 301 0.744 217 11 0.617 299 494 
255 2.439 656 17 1.722 209 49 1.092 445 55 0.933 431 282 0.744 217 14 0.617 301 385 

3.3. Reid soft-core singlet potential 

This potential (Reid 1968), which describes the nucleon-nucleon interaction, consists 
of three Yukawa-type terms and is very difficult to handle because its repulsive part 
is very strong. In order to also test other distributions of mesh points we used in this 
case a grid with exponentially increasing points 

ri = R,,, exp Q- - 1  (exp Q-I)-’  [ ( I r l )  I i =  1,2 , .  .., N. 

The results for Elab = 24 MeV are shown in table 3. 
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Table 3. Extrapolated values of the s-wave phase shift S for the Reid soft-core singlet 
potential at E , , ,  = 24 MeV. N denotes the number of mesh points and Q is the parameter 
in (17) determining the distribution of the mesh points. For Q = 1 the mesh points are 
equidistant, and for Q >  1 the grid spacings are finer near the origin. 

Q 

N 1 2 4 6 9 

20 1.078 164444 0.771 374 708 0.736 141 893 0.744 214 275 0.775 019 594 
39 0.647 869 531 0.717 767 183 0.717 884 289 0.717 759 870 0.717 115 867 
77 0.722 291 586 0.717 905 330 0.718 013 761 0.718 016 109 0.718 011 013 

153 0.717 892 620 0.718 012928 0.718 013 342 0.718 013 311 0.718 013 505 
305 0.718 012 902 0.718 013 305 0.718 013 344 0.718 013 344 0.718 013 343 
609 0.718 013 320 0.718 013 344 0.718 013 344 0.718 013 344 0.718 013 344 

3.4. Positron-hydrogen scattering in the static approximation 

This problem is difficult because the incident positron polarises the atom and the 
resulting interaction is long ranged (Sarkar et a1 1979): 

V ( r )  = 2 exp( - r ) (  1 + I /  r)  - a ( r ) /  r4 (18) 

where 

a( r )  = 4.5 - exp(-2r)(3/2r5+3r4+6r3 +9r2+9r  +4.5). 

The results for k = 0.5 and R,,, = 200 are shown in table 4. The first column contains 
the non-extrapolated results obtained by equidistant partition of the integration range 
(0,200), and the results in the second column were again obtained without extrapolation 
but with a grid size which increased with the distance from the origin as r4. The 
extrapolated results are given in the last column of this table and are probably correct 
to all the significant figures shown. To achieve the same accuracy without extrapolation 
and with h = constant one would have to use at least 100 000 mesh points. 

Table 4. Extrapolated values of the s-wave phase shift for the potential (18) modelling 
positron-hydrogen elastic scattering. N is the number of mesh points. 

Q = 1  Q = 4  Q = 4  

N Non-extrapolated Non-extrapolated Extrapolated 

20 0.006 0054 -0.045 7567 -0.045 7567 
39 0.017 4396 -0.047 3526 -0.047 8846 
77 0.179 241 -0.047 5183 -0.047 5528 

153 0.013 9302 -0.047 5595 -0.047 5735 
305 -0.035 1142 -0.047 5699 -0.047 5734 
609 -0.044 5609 -0.047 5725 - 

1217 -0.046 8254 -0.047 5732 - 
2433 -0.047 3862 -0.047 5733 - 
4865 -0.047 5261 -0.047 5734 - 
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3.5. Calculation of the T-matrix poles 

The extrapolation technique described above can also be used for calculation of the 
T-matrix poles which, depending on their position in the complex k plane, correspond 
to bound, virtual or resonance states. The T matrix given by (12) has a pole if 

l+[oEcos krV(r)cp(k, r )  dr=O 

(here, for the calculation of cp we must use the complex Green function (14)). To find 
such a pole we must solve (9) for several energies in the vicinity of the pole and then 
vary k until (19) is satisfied. The results of the calculation of the energy E, of a virtual 
state (singlet deuteron) for the Reid soft-core potential (Reid 1968) are given in table 
5. The pattern of convergence for the triplet case, where a bound state (the deuteron) 
exists, is similar. Table 6 shows the results of calculation of a (complex) resonance 
energy in the nfcv scattering problem, modelled by the Woods-Saxon potential 
(Kukulin et a1 1983), in which two resonances (one narrow and one broad) have been 
computed. 

3.6. Electron- hydrogen elastic scattering 

As a final example of the extrapolation approach we take the much more fundamental 
problem of elastic scattering of electrons by hydrogen atoms in the static exchange 
approximation (Mott and Massey 1965). Here the non-local exchange interaction U 
is of fundamental importance and its presence makes this problem difficult to solve. 
Now, no transformation of the type (IO) makes the kernel K triangular and other 
methods for solving (1) must be used. For this purpose we used the method of continued 

Table 5. Extrapolated values of the energy of the virtual state (singlet deuteron) for the 
Reid soft-core potential. N is the number of mesh points. 

N E,, (MeV) 

21 -0.024 3776 
41 -0.100 1009 
81 -0.119 5639 

161 -0.121 6988 
321 -0.121 7624 
64 1 -0.121 7624 

Table 6. Extrapolated energies E and widths r (in MeV) in n + a scattering. N is the 
number of mesh points. 

N E,. r E, r 

21 0.912 2943 0.911 5573 1.679 1608 5.485 4995 
41 0.832 6353 0.772 4977 1.662 7154 5.589 2748 
81 0.836 9117 0.779 5086 1.663 8234 5.582 3361 

161 0.836 8575 0.779 4177 1.663 8095 5.582 4229 
321 0.836 8576 0.779 4178 1.663 8095 5.582 4229 
641 0.836 8576 0.779 4178 1.663 8095 5.582 4229 



362 J Hora'c'ek 

Table 7. Extrapolated values of s-wave phase shifts for elastic scattering of electrons by 
hydrogen atoms in the static exchange approximation. N is the number of mesh points 
used at each extrapolation step. R,,,, = 12. 

E 

N 0.01 0.09 0.25 0.49 0.76 1 .o 2.0 5.0 

8 2.3888 1.5036 1.0303 0.74994 0.61483 0.56036 0.553 11 0.81873 
15 2.3964 1.5084 1.0307 0.743 41 0.600 91 0.541 98 0.505 79 0.470 40 
29 2.3964 1.5086 1.0311 0.74427 0.601 86 0.54274 0.50944 0.549 81 
57 2.3964 1.5086 1.0311 0.74427 0.601 86 0.542 77 0.50935 0.54486 

Table 8. Extrapolated values of s-wave phase shifts for elastic scattering of electrons by 
hydrogen atoms in the static exchange approximation and R.,,, = 30. 

E 

0.01 
0.09 
0.25 
0.49 
0.76 
1.0 
2.0 
5.0 

2.395 803 43 
1.508 099 37 
1.031 498 28 
0.744 148 07 
0.601 717 36 
0.542 894 64 
0.509 320 20 
0.544 930 79 

2.907 599 82 
2.461 128 28 
2.070 066 64 
1.748 819 59 
1.527 218 41 
1.390 519 78 
1.075 615 42 
0.763 915 79 

fractions which we proposed some time ago (HoriEek and Sasakawa 1983,1984, 1985). 
This method is iterative, but its convergence is guaranteed and usually a very small 
number of iterations (three or four) gives quite accurate results. The results are 
summarised in table 7.  The phase shifts have been calculated with R,,, = 12. This 
value is sufficiently large for four-figure accuracy. In order to obtain a higher accuracy 
a larger value of R,,, must be used. The phase shifts in table 8 have been obtained 
with R,,, = 30 and are probably correct to all figures. 

4. Conclusion 

In conclusion we can state that the application of the Romberg extrapolation technique 
with variable grids to the solution of integral equations represents a very powerful tool 
for calculation of not only phase shifts but also of bound, virtual and resonance states. 
The generalisation to off-shell scattering is straightforward, and very accurate values 
of the off-shell T-matrix elements can be obtained with a very small number of mesh 
points. 
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